74 COMPUTE!

July, 1981, Issue 14

The Practical
Aspects Of
Assembly
Language
Programming

Bruce D. Carlorey

Raleigh, NC

Part I: Using Flags

It starts with a vague sense of dissatisfaction with
the limitations of BASIC. Then you feel a twinge
of jealousy towards that mysterious cult of software
Gurus who seem 1o use black magic to exhort their
machines to run devilishly fast and speak in strange
tongues to devices like PIAs and UARTS. Before
you know it you're TAKING THE PLUNGE
(COMPUTE!, March, 1981), and after struggling
down a river of addressing modes and across a sea
of opcodes, you know you've passed the initiation
rites and can call yourself an Assembly Language
Programmer. But perhaps you still feel like some-
thing of a novice programmer when it comes to
assembly language. If you know assembly language,
but don’t feel confident that your machine language
rautines are the best that they can be, this series of
articles may help. Even if you are an “expert”
assembly language programmer, you may find a
useful technique or two presented. Or, you may
know of better techniques, in which case 1 encour-
age you to write them up and send them in to
COMPUTE!, so we can all benefit.

I'm going to cover a number of loosely-related
topics in detail, putting emphasis on program
efficiency. After all, it is almost axiomatic that if
you are programming in assembly language at all.
you are doing it either to improve execution speed
or to reduce program size, or both. The rest of this
article assumes that you have a basic working
knowledge of 6502 assembly language. The First
installment discusses the deceptively simple topic
of flags.

Representing Flags

Flags are familiar to any experienced programmer.
A flag is a variable which can have only two possible
states: 'RUE or FALSE. It can be represented by a
single bit in memory, but for ease of manipulation
by a program, a whole byte is usually used.

Since flags are so simple in concept, you may
be surprised to know that many programmers use
flags quite mefficiently. To demonstrate what |
mean, first consider the example program in
Listing 1. This subroutine, usually called a keyboard
driver, reads one character from an ASCll-encoded
keyboard. The keyboard is assumed 1o be connected
1o a parallel 1/0 port such as is found in a 6820,
6522, 6530, 6532, or similar device. The seven dara
lines from the keyboard are tied to bits 0 through
6, and a negative-going strobe is connected to bit 7
of the port. When bit 7 of the port becomes zero,
the ASC!I code for the key which is depressed can
be read on the remaining 7 bits. Notice that the
strobe is connected to bit 7 because bit 7 is always
zero in the ASCII cade anyway, and because we
can test it easily using BMI or BPL instructions,
since bit 7 is the sign bit in a2 word.

Now suppose that you discover that your
Monitor program will accept only uppercase
alphabetic letters for commands, but your keyboard
only delivers lower case letters unless you hold
down SHIFT. What can you do about this nuisance
if you don’t have an ALPHA LOCK key? You

Properly used, flags
can greatlly simplify and
improve your programming.

could go to the parts box and build a circuit to
modify your keyboard, or you can take the software
approach and simply add some code to your driver
to “fold” all lower-case alphabetic characiers ($61
through $7A in the ASCII table) to their uppercase
equivalents, as shown below:

FOLD CMP #37B SLOWER CASE“Z" + 1
BCS FOLD! ;BRANCHIFNOTLOWERCASEALPHA
CMP #361 ;LOWERCASEA

BCC FOLD! ;BRANCHIFNOTLOWERCASEALPHA
SBC #%20 ;ELSE FOLD LOWER TO UFPPER CASE
ALPHA
FOLD1

This code can simply be inserted at the end of the
keyboard driver, just before the RTS. The trouble
is, your driver will now always return upper case al-
phabetic characters. This may be desirable for en-
tering commands to the Monitor, but when you're in
the Editor you may want to be able to input lower
case. The solution? You need an “Alpha-Lock Ena-
ble” flag to tell the driver whether to allow lower case
or not. You can start by allocating space for your

flag:

ALFALK .BYTE 0 ;ALPHA LOCK FLAG FOR
KEYBOARD DRIVFR

Now how do you use it? The natural choice is to set

78 COMPUTE! July, 1981, Issue 14

the flag to 1 if it's true and 0if it's false. The com-
plete driver routine using this method is shown in
Listing 2.

This routine is satistactory (because it works!),
but it can be substantially improved. Notice that you
had to temporarily save the returned character on
the stack while you tested the Alpha-lock flag.

Next ume Pl show a substantal improvement
and more wavs o improve efficiency.

July, 1981, issue 14

COMPUTE!

1700
1701

0060

1780 A%0C
1782 800117
1785 ADOOQ17
1788 30FB
178A 2C0017
178D 10FB
178F 60

0000
NO ERROR LI

LISTING 1: SIMPLE KEYBOARD DRIVER ROUTINE

S UL M WU B B s e e we W

-

<
b -
(=]

PADD
4
INCH

INCH1

INCHZ

NES

SUBROUTINE INCH: KEYBOARD DRIVER FOR ASCII-ENCODED
KEYBOARD WITH PARALLEL INTERFACE.

ADDRESSES SHOWN ARE FOR 6530 ON KIM-1 COMPUTER.
KEYBOARD DATA LINES TO PORT A BITS O TO 6,
NEGATIVE GOING STROBE TO BIT 7.

ON ENTRY: NO ARGUMENTS.
ON RETURN: REGISTER A = ASCII CODE FOR KEY PRESSED;
X AND Y PRESERVED.

nou

Xz

LDA
STA
LDA
BMI
BIT
BPL
RTS

.END

31700
31/01

$1780

#300
PADD
PAD
INCH1
PAD
INCH2

sKIM PORT A DATA REGISTER ON 6530
;KIM PORT A DATA DIRECTION REGISTER

;**PROGRAM ORIGIN**

;SET PORT DIRECTION = INPUTS
;TEST PORT

;WAIT FOR STROBE PULSE

sWAIT FOR END-OF-STROBE

1700
1701

0000

1780 A900
1782 800117
1785 ADOO17
1788 30FB
178A 2C0017
1780 10FB

LISTING 2: KEYBOARD DRIVER WITH ALPHA LOCK FLAG

We Wa We W we e e e e W s e

PAD
PADD

INCH
INCH1
INCH2

N

= FL

N

-0 = TRUE

SUBROUTINE INCH: KEYBOARD DRIVER FOR ASCII-ENCODED
KEYBOARD WITH PARALLEL INTERFACE.

ADDRESSES SHOWN ARE FOR 6530 ON KIM-1 COMPUTER.
KEYBOARD DATA LINES TO PORT A BITS O TO 6,
NEGATIVE-GOING STROBE TO BIT 7.

ON ENTRY: IF ALFALK IS NON-O, THEN ALL LOWERCASE LETTERS WILL
BE RETURNED AS THE EQUIVALENT UPPERCASE ALPHA.

ON RETURN: REGISTER A = ASCII CODE FOR KEY PRESSED;

X AND Y PRESERVED.

non

LDA
STA
LDA
BMI
BIT
BPL

$1700
$1701

$1780

#300
PADD
PAD
INCH1
PAD
INCHZ

sKIM PORT A DATA REGISTER ON 6530
;KIM PORT A DATA DIRECTION REGISTER

;PROGRAM ORIGIN

;SET PORT DIRECTION = INPUTS
;TEST PORT

;WAIT FOR STROBE PULSE

sWAIT FOR END OF STROBE

COMPUTE! August. 1981 Issue 15

Part Two:

The Practical
Aspects Of
Assembly
Language
Programming

Editoy’s Note: Last month, in the first part of this article,
the author explored some methods of handling flags. At
the end, he discussed setting aside bytes for flags. Heve he
introduces some additional techwiques. To begin with, he
proposes a more efficient method of stoving and testing

flags. RM

I[{ instead you choose $80 to represent true and
$S00 1o represent false. vou can use the BI'T instruc-
tion to test the flag without having to save the A
register:

BIT ALFALK ;TESTTHEFLAG
BPL FOLDI1 ;BRANCH IF NO “FOLDING"” DESIRED

You don't have to save A because the BI'T instruc-
tion sets the sign flag according to the status of bit 7
of the operand, without altering the accumulator.
This saves you 4 bytes in your program, as shown in
Listing 3. It also runs faster. You now know two
rules to improve efficiency:

Rule 1: Use bit 7 of a byte as a flag.

Rule 2: A flag in memory can be tested without
“clobbering™ a register by using the BIT instruction.

Now that you know how to test the flag, you will
want to be able to set or clear it. This may seem terri-
bly obvious, for example, ’

LDA #8$80
STA ALFALK ;ENABLEALPHA-LOCK MODE

sets the flag and,

LDA #$00
STA ALFALK ;DISABLEALPHA-LOCK MODE

clears the flag. This method uses one less byte 10 set
the flag and two less bytes to clear the flag! On the

86 COMPUTE!

August 1951 5508 1

negative side, it takes two machine cycles longer
than the first method to set the flag, but is equally
fast for clearing the flag. The shift-method also does
not clobber the A register, which may often be use-
ful. Again on the negative side, you could argue that
the shift method is not as straightforward as the first
method, and also that it leaves the remaining seven
bits of the flag “undefined”. However, this can also
be useful, as I shall now demonstrate.

Suppose at some point in your program you
want to temporarily allow entry of lower case letiers,
and then restore the previous mode (either alpha-
lock or non-alpha-lock, whichever was previously in
effect). One method might be:

LDA ALFALK ;;RECALLPRESENTALPHA-MODE
STATUSFLAG

PHA :SAVEONSTACK

LDA #0

STA ALFALK ;DISABLEALPHA LOCK TEMPORARILY

'(.;ode using lower case input...)
;LA sRECALLORIGINAL ALPHA-LOCK

STATUS
STA ALFALK ;RESTOREOLDMODE

This program segment uses the stack to save and
restore the flag status. Now consider this alterna-
tive:

LSR ALFALK ;SAVEOLDMODE,CLEARALPHA LOCK
(code using lower case input...)

t':SL ALFALK RESTOREPREVIOUS ALFPHA LOCK
MODE

This program segment performs the same function
in 6 bytes instead of 13, runs faster. and doesn’t clob-
ber the accumulator! It illustrates a simple but
powerful fact:

Rule 3: A single byte can be used as an 8-level
push-down stack for flags.

Shifting the flag byte right moves the previous
status into bit 6; shifting the flag left restores the

old lag back into bit 7. This rule has several coro-
laries which are occasionally useful:

Rule 4: You can test the previous (saved) Hag
by using a BIT instruction followed by a BVC or

.. programs will have fewer
branches, will use less memory,
and will run faster ...

BVS instruction.

Rule 5: You can test both flags (bit 7 and bit
6) with only one BI'T instruction.
For example:

BIT FLAG sTEST THE FLAG
BMI NEWSET ;BRANCH IFPRESENT FLAG ISSET
BVS OLDSET ;BRANCHIFPREVIOUSFLAGWASSET

Another side effect is:

Rule 6: You can test a flag and restore it to its
previous state at the same time by using ASL fol-
lowed by BCC or BCS.

For example:

ASL ALFALK ;DISCARDPRESENT,RESTOREOLD
FLAG

;BRANCH IF DISCARDED FLAG WAS
SET

BCS ISSET

The same sequence can be used to clear the [lag in-
stead il it was imitialized o 0 originally and was not
used as a stack. All these Functions have the advan-
tage of not disturbing any registers (except the
PSW). Since they are slightly “tricky”, you should
document your cade with clarifying comments.

As you can see, there’s more to the simple litde
flag than meets the eye! Properly used, flags can
greatly simplify and improve your programming. If
you try the techniques presented here, 1 think you
will find that your programs will have fewer
branches, will use less memory, and will run faster.
In next month’s installment, we will look at methods
for improving machine language loops.

Listing 3: Improved Keyboard Driver With
Alpha-Lock Flag Using Bit 7=1=True

wrwe W wr wr Wy

SUBROUTINE INCH: KEYBOARD DRIVER FOR ASCII-ENCODED
KEYBOARD WITH PARALLEL INTERFACE.

ADDRESSES SHOWN ARE FOR 6530 ON KIM-1 COMPUTER.
KEYBOARD DATA LINES TO PORT A BITS O TO 6,

o8

COMPUTE! August, 1981 ssue 15

1700
1701

0000

1780
1782
1785
1788
178A
178D

178F
1792
1794
1796
1798
179A
179C
179¢€

179F
0000

NO ERROR LINES

A900
800117
ADOO17
30FB
2C0017
10F8

2C9F17
100A
€978
B006
€961
9002
E920
60

00

A we w we M e

PAD
PADD

INCH
INCH1

INCHZ

ALFALK

NEGATIVE-GOING STROBE TO BIT 7,

ON ENTRY: IF ALFALK BIT 7 IS 1, THEN LOWERCASE LETTERS WILL
BE RETURNED AS THE EQUIVALENT UPPERCASE ALPHA.

ON RETURN: REGISTER A = ASCII CODE FOR KEY PRESSED;

X AND Y PRESERVED.

i $1700 ;KIM PORT A DATA REGISTER ON 6530

N $1/01 ;KIM PORT A DATA DIRECTION REGISTER
*= $1780 ;PROGRAM ORIGIN

LDA #3500

STA PADD ;SET PORT DIRECTION = INPUTS

LDA PAD sTEST PORT

BMI INCH1 ;WAIT FOR STROBE PULSE

BIT PAD

BPL INCHZ ;WAIT FOR END OF SYROBE

If ALPHA-LOCK FLAG IS SET, FOLD ANY LOWERCASE LETTERS TC
EQUIVALENT UPPERCASE LETTERS.

BIT ALFALK ;TEST "ALPHA LOCK" FLAG

8PL FOLD1 ;BRANCH IF NO FOLDING DESIRED

CMP #378 JLOWER CASE "Z" + 1

BCS FOLDL sBRANCH IF PUNCTUATION

CMP #361 ;LOWER CASE "A"

BCC FOLD1 ;BRANCH IF NOT LOWER CASE ALPHA
S8C #3520 ;ELSE FOLD TO EQUIVALENT UPPERCASE
RTS

ALPHA LOCK FLAG (DEFAULT = ALLOW LOWER CASE)...
.BYTE © ;"ALPHA LOCK" FLAG; NON-O=UPPERCASE ONLY.

.END
]

